一种近似积分方法:Monte Carlo Integral
$$ F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)} $$
$$ \int f(x) \mathrm{d} x=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)} \quad X_{i} \sim p(x) $$
Motivation: Whitted-Style Ray Tracing
Always perform specular reflections / refractions
Stop bouncing at diffuse surfaces
这些简化不一定正确
Whitted-Style Ray Tracing is Wrong
the rendering equation is correct (部分简化光线的性质)
$$ L_{o}\left(p, \omega_{o}\right)=L_{e}\left(p, \omega_{o}\right)+\int_{\Omega^{+}} L_{i}\left(p, \omega_{i}\right) f_{r}\left(p, \omega_{i}, \omega_{o}\right)\left(n \cdot \omega_{i}\right) \mathrm{d} \omega_{i} $$